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Abstract: The mechanism of prokaryotic gene expression remains incompletely understood. Promoters are regions in genome 
that locating upstream to genes and regulate of gene expressions. Despite more and more E. coli K-12 promoter sequences have 
been obtained experimentally, and some regions such as -10 region and -30 region have been described, the features in promoter 
sequences are far from explicitly characterized. Here, we address this challenge using an approach based on the deep 
convolutional neural network (CNN). We collected six classes of E. coli K-12 promoter sequences which are all annotated as 
with strong evidence and belong to only one promoter class in RegulonDB database. Then, we applied the CNN model to 
recognize the six classes of promoters. The CNN model achieved an accuracy of above 97% for all six classes of promoters. Next, 
we extracted the weight matrix of the last convolution layer in CNN with the Grad-Cam algorithm, and convert the weight matrix 
to an information content matrix. Finally, we visualized the information content matrix as promoter logos using the logomaker 
tool and discover the promoter features in six classes of promoters. Our approach could not only find the previous described 
promoter feature regions, but could also discover promoter features with better sensitivity and accuracy. We provide a novel 
computational approach to discover features in biological sequences. 
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1. Introduction 

Promoters are regions of DNA that locating upstream to 
genes and regulate of gene expressions [1, 2]. In bacteria, the 
promoter is recognized by RNA polymerase and an 
associatedσfactor. In E.coli, seven classes of σ promoters 
have been found: σ24, σ28, σ32, σ38, σ54, σ70 and σ19 [3, 4]. 
RegulonDB is a database of the regulatory network of gene 
expression in E. coli K-12. Currently, RegulonDB has 
collected about 8000 E. coli K-12 promoter sequences. 
Among them, about 1200 promoter sequences having strong 
evidence being annotated belong to one or more σ classes 
[5]. 

Convolutional neural network (CNN) is one of the most 
important model in deep learning [6, 7]. CNNs have become 
the gold standard for numerous image analysis tasks [8]. It 
surpasses many established algorithms, such as support vector 
machines or random forests [9-11]. CNN also demonstrates a 
better performance in recognition of E. coli K-12 promoters 

than that of PSSM (Position-Specific Scoring Matrix) method 
[12-15]. In previous study, we have demonstrated that CNN 
outperforms PSSM method in identification of different 
promoter classes. However, it was unclear why CNN performs 
better [16]. 

The weight matrix of the last convolution layer in CNN 
contains the features extracted from the input data, and the 
Grad-Cam algorithm has realized the visualization for the 
weight matrices of CNN intermediate convolution layers [17]. 
In this work, we first train a CNN model, then we used the 
Grad-Cam algorithm to obtain the weight matrix of the last 
convolution layer. Further, we converted the matrix to an 
information content matrix. Finally, we used the logomaker 
tool [18] to visualize the information content matrix as a 
promoter logo. Our method not only successively displays the 
well-known -10 and -30 regions shown by the Weblogo 
method [19], but also be more accurate than the Weblogo 
result. Moreover, our method is more sensitive in discovering 
the dominant positions and bases in the promoter sequence 
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other than -10 and -30 regions. These factors contribute the 
CNN a better performance than PSSM in discovering 
promoter features. 

2. Data & Methods 

2.1. Promoter Sequences 

The E. coli K-12 promoter DNA sequences were derived 
from RegulonDB database 
(http://regulondb.ccg.unam.mx/menu/download/datasets/inde

x.jsp). We collected six classes of promoter sequences: σ24 
(66), σ28 (10), σ32 (51), σ38 (102), σ54 (19) and σ70 (766) 
(The number in the parenthesis indicates the number of 
sequences). In RegulonDB database, these promoter 
sequences are all annotated as with strong evidence and 
belong to only one promoter class. The length of each 
promoter sequences is 81nt, including 1nt transcription start 
site (position 0), 60nt upstream region and 20nt downstream 
region (Figure 1A). In this study, we chose the 60nt upstream 
region as the dataset for CNN input. 

 

Figure 1. Overview of the method. 

2.2. Convolution Neural Network 

Since the CNN requires a two-dimension matrix as input, 
we first transformed the one-dimension promoter sequences 
into two-dimension matrices using one-hot encoding method. 
In detail, we encode each base into a four-digit list. In detail, A 
= [1,0,0,0], T = [0,1,0,0], C = [0,0,1,0], G = [0,0,0,1]. Then, 
the one-dimension promoter sequences are transformed into 
4×60 two-dimension matrices (Figure 1B). 

Next, we constructed a convolutional neural network. The 
CNN contains three convolution layers. Each convolution 
layer followed a batch normalization layer and a dropout 
layer to reduce the overfitting. We set the padding parameter 
“same” to keep the size of the last convolution layer matrix 
being the same as the input matrix. The last convolution 
layer is followed by one flatten layer and an output layer 
(Figure 1C). 

We performed the 10-fold cross-validation to train the CNN 
model. We saved the model weights in an h5 file after each 
round of training and applied the weights from the last round 
as the starting weights for the next round of training. After 

several rounds of iterations the performance of the CNN was 
not improved any more. We used accuracy (Acc), specificity 
(Spec), sensitivity (Sen) and ROC curve to evaluate the 
performance of the CNN model. 

Concretely: 
Acc = (TP+TN) / (TP+TN+FP+FN) 
Spec = TN / (FP+TN) 
Sen = TP / (TP+FN) 
Where: TP, TN, FP and FN are shorts for true positive, true 

negative, false positive, and false negative, respectively. 

2.3. Obtaining the Last Convolution Layer Matrix (G) Using 

Grad-CAM Technique 

The last convolution layer matrix contains the features 
extracted from the input matrix. For each promoter sequence, 
we used the Grad-CAM technique [17] to obtain its last 
convolution layer matrix (G) (Figure 1D). 

2.4. Generating the Promoter Sequence Feature Matrix (S) 

In matrix G, the row item represents four bases. While in a 
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particular promoter sequence, only one base occurs in one 
position, so we generated the promoter sequence feature 
matrix (S) for each promoter sequence from the matrix G 
(Figure 1E). In detail: 

0
ij jij

ij

if base base

otherwise

== 


G SG
S        (1) 

2.5. Generating the Promoter Feature Matrix (P) 

After we obtained the matrices S for each promoter 
sequences in six promoter classes, we created the promoter 
feature matrix P for each promoter class (Figure 1F). We 
calculated the P matrix as following: 

0

m
n

ij ij

n=

=∑P S                   (2) 

Where m is the number of sequences for a particular 
promoter class. 

2.6. Generating the Promoter Feature Entropy Matrix (E) 

Finally, we transform the promoter feature matrix P into 
the promoter feature entropy matrix E (Figure 1G) as 
following: 

2log
j j

i i
ij j j

i i

= −
∑ ∑

P P
E

P P
          (3) 

Where P�
� is the element of row i of j column in the matrix P. 

2.7. Creating Promoter Logo 

We use the logomaker [18] to visualize the promoter feature 
entropy matrix E and created promoter logos. 

3. Result and Discussions 

3.1. Identification of Promoters with CNN 

First, we identified promoters with CNN. Table 1 shows 
that the accuracies of the CNN model for recognizing six 
promoter classes are all above 97%, while the AUCs (Area 
Under Curve) in ROC curves for six promoter classes are 
above 0.84 except sigma 38 (AUC=0.63) (Figure 2). The good 
performances of CNN in identifications of promoters are 
guarantees to discover features in promoters. 

Table 1. The performance of CNN in promoter identification. 

Promoter Accuracy (%) Sensitivity Specificity AUC 

σ24 99.8 0.71 0.66 0.87 
σ28 99.9 0.94 0.53 0.92 
σ32 99.5 0.71 0.69 0.92 
σ38 99.0 0.68 0.66 0.63 
σ54 99.9 0.85 0.65 1.00 
σ70 97.9 0.47 0.78 0.84 

 

 
Figure 2. ROC curves for promoter identifications using CNN. 
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3.2. Promoter Features 

We use the Grad-CAM technique [17] to extract the weight 
matrix (G) in the last convolution layer of CNN (Figure 1D), 
and then transform the matrix G into the promoter sequence 
feature matrix (S) (Figure 1E), the promoter feature matrix (P) 

(Figure 1F), and the promoter feature entropy matrix (E) 
(Figure 1G) in turn. The matrix E contains the promoter 
features in term of the information content. Finally, we 
visualize the matrix E using the logomaker tool [18]. Figure 3 
shows the feature logos for six classes of promoters. 

 

Figure 3. Promoter logos. A. σ24, B. σ28, C. σ32, D. σ38, E. σ54, F. σ70. In each sub graph, the upper logo is created by the logomaker tool, the bottom one is 

created by the Weblogo tool. 

Figure 3 shows that our method could discover all feature 
regions successively found by Weblogo method (Figure 3). 
For example, the -10 region and the -30 region. 

The Weblogo method is based on the probability of a base 
occurring at a position in the promoter sequence [19]. In 
detail, the Weblogo method finally generated a PSSM 
(Position-Specific Scoring Matrix) and visualized the PSSM. 
In previous study, we have demonstrated that CNN 
outperforms PSSM in promoter identification. An interesting 
question is why CNN performs better than PSSM? In this 
study, we found that CNN could discover the importance of 
each base at each position in the promoter sequence more 
precisely the PSSM. For example, in Figure 3B, at position 
-30, Weblogo shows that A is the dominant base, while our 
method shows that both A and G are important, and G is the 
dominant base. Moreover, our method is more sensitive than 
the PSSM method. For example, in Figure 3D, Weblogo 
shows faint signals outside the -10 region, but our method 
gives more signal details. The better sensitivity and accuracy 
contribute the CNN outperforming the PSSM method. 

4. Conclusions 

In this study, we demonstrated that deep convolutional 
neural netword model performs better than the traditional 
bioinformatic algorithm in finding features in DNA sequences. 
The approch could also be applied in finding features in 
protein amino acid sequences. 
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