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Abstract: The measurement of tree similarity based on structure comparison has been long used in diverse fields. We applied 

the evolutionary tree method to study the cancer genome. Cancer evolutionary trees, representing cancer diversity, provide 

information on the clonal evolution and the clinical outcome of cancer patients. This study considered 107 colorectal cancer 

(CRC) patients who received deep targeted sequencing of cancer tissues. The evolutionary trees of individual cancer patients 

were reconstructed from genome sequencing data based on variant allele frequencies (VAFs) of point mutations and small 

insertions or deletions (indels). The main purpose of this study was to predict cancer recurrence. We mapped the structure of a 

cancer evolutionary tree to a rooted tree and developed a canonical-form transformation for solving tree isomorphism to ensure 

that each patient has a unique tree structure. We proposed an algorithm for comparing tree similarity in terms of cost calculation 

between evolutionary structure trees. The cost was calculated using the node position, tree size (or number of nodes), tree height, 

node depth, number of descendants of the node (the size of the subtree with the node as a root), and relationship of the node with 

other nodes. After tree similarity comparison, the cancer patients were clustered into two groups through k-means clustering. The 

clustering information indicated that the evolutionary structure trees were associated with gender and tumor invasion stage. 

Several machine-learning strategies including random forest, support vector machine (SVM), bagging, and boosting were used to 

predict cancer recurrence in these patients. Our results revealed that combining the clustering information of evolutionary 

structure trees increased the prediction performance compared with using clinical information alone, and tree similarity 

comparison can help in the prognostic analysis of cancer patients. 

Keywords: Cancer Evolutionary Trees, Colorectal Cancer, Evolutionary Structure Trees, Canonical-form Transformation,  

Tree Simiarity Comparison 
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1. Introduction 

Cancer is a disease caused by the accumulation of somatic 

mutation. The cancer clonal theory states that most tumors 

originate in a single cell and that tumor progression and 

clonal expansions are caused by genetic variability; thus, a 

tumor is the result of clonal evolution [1]. Understanding the 

evolutionary history of tumor growth may provide valuable 

insights into tumor cell proliferation and survival [2]. Many 

studies have recently integrated evolutionary theory and 

genomic data into modern techniques for studying tumor 

growth and progression [3]. In this study, we used the 

evolutionary tree method to understand tumor progression. 

The tumor composition and evolutionary structure can be 

determined through somatic variant calling by using variant 

allele frequencies (VAFs) according to the read counts of the 

tumor and matched normal cell sequences in each patient. 

The VAFs of somatic variants can be used to reconstruct the 

cancer evolutionary histories as a cancer evolutionary tree, 

which reflects the somatic variant accumulation in each 

patient [4, 5]. 

In recent years, many methods have been developed to 

construct cancer evolutionary trees from single-nucleotide 

variants in bulk sequencing data [6-8] and single-cell 

sequencing data [9-11]. Cancer evolutionary trees are of two 

types: sample tree and sub-clonal tree. Several methods are 

used for the construction of a sample tree [12-14], including 

maximum parsimony [15, 16], distance matrix method [17], 

maximum likelihood estimation (expectation-maximization 

(EM) algorithm) [18], and Bayesian sampling (Markov chain 

Monte Carlo (MCMC)) [19]. A sub-clonal tree clusters driver 

mutations into several subclones with a common frequency 

and reconstructs the lineage according to the following two 

assumptions [20-22]: (1) a mutation cannot recur during 

tumor evolution and (2) each mutation is acquired once and 

is never lost. In these trees, the root represents a normal cell 

and the subsequent node of the root represents a founder cell. 

The nodes below the founder cell represent descendant 

subclones, and the edge lengths indicate the number of driver 

mutations that are newly accumulated in the descendant 

nodes [23, 24]. In this study, rooted cancer evolutionary trees 

were constructed with a sub-clonal architecture. 

Studies have indicated that the cancer evolutionary tree 

patterns differ between clear cell renal cell carcinomas and 

non-small-cell lung cancer [25, 26]. The branching patterns 

of cancer evolutionary trees and the somatic mutation 

fraction of subclones are crucial for identification of the type 

or even the prognosis of cancer. 

Studies have measured the similarity between two trees by 

using edit cost, which refers to the number of insertions or 

deletions of nodes required for transforming one tree into the 

other [27-29]. 

Computational methods for quantifying the similarity 

between two cancer evolutionary trees based on tree structure 

have not attracted much research attention [24]. In this study, 

we mapped the cancer evolutionary tree structure to a rooted 

tree and developed an algorithm for effective comparison 

among trees through the exchange of operations between the 

subtrees. This procedure is referred to as canonical-form 

transformation and tree similarity comparison. After tree 

comparison for each patient, we clustered the patients into 

two groups and developed several machine learning models 

to predict cancer prognosis. Figure. 1 presents the entire 

experimental process. 

2. Materials and Method 

2.1. Patients and Samples 

 

Figure 1. Overall workflow of the experiment. 



 Computational Biology and Bioinformatics 2021; 9(1): 1-14 3 

 

In this study, 107 patients with stage III colorectal cancer 

(CRC) were recruited from National Cheng Kung University 

Hospital (NCKUH) between January 2014 and January 2019. 

All CRC patients received the standard surgical resection 

followed by adjuvant chemotherapy with the mFOLFOX6 

(5-fluorouracil, leucovorin, and oxaliplatin) regimen. Clinical 

information of the patients was obtained from medical 

records. Tumor tissue and blood samples were collected at 

the time of enrollment. This study was approved by the 

Institutional Review Board of NCKUH (A-ER-103-395 and 

A-ER-104-153) and was performed in accordance with the 

guidelines of the Declaration of Helsinki. All participants 

provided written informed consent. 

2.2. Evolution from Cancer Genome 

To elucidate tumor development and progression in each 

patient, we reconstructed the cancer evolutionary tree by using 

genome sequencing data based on VAFs of point mutations 

and small insertions or deletions (indels) obtained from variant 

call format (VCF) files. The VCF files contain information 

regarding the variants’ chromosomes, positions, bases, 

reference genes and some data retrieved from the Single 

Nucleotide Polymorphism Database (dbSNP). In this study, we 

obtained tumor target sequencing and germline whole genome 

sequencing data of 107 CRC patients. Information regarding 

somatic mutations was obtained using the tumor-normal 

single-nucleotide variant (SNV) calling tool deepSNV [30]. 

We used the ANNOVAR [31] tool to annotate somatic 

mutations and filter out indel variants not reported in the 1000 

Genomes Project, dbSNP, or Exome Aggregation Consortium 

(ExAc). After collecting the point mutations and indels of each 

patient, we reconstructed their cancer evolutionary tree (Figure. 

2) by using PhyloWGS [14]. 

2.3. Cancer Evolutionary Tree 

Figure. 2(a) presents an example of cancer evolution in our 

study. Tumor evolves from a normal cell (clone A) to a 

cancerous cell. A founder cell (founder clone B) is established 

after a normal cell acquires several passenger mutations and 

driver mutations (founder somatic mutations). Subclones (C and 

D) evolve by acquiring subsequent somatic mutations. A root (A) 

and its adjacent node (B) represent the normal and founder cell, 

respectively. The following nodes indicate subclones (C and D), 

and edge lengths indicate the number of somatic mutations 

acquired in the subclones (Figure. 2(b)). 

2.4. Tree Structure Mapping for the Cancer Evolutionary 

Tree 

To compare cancer evolutionary trees, the constructed cancer 

evolutionary tree is mapped to the field of use in graph theory. 

The cancer evolutionary tree contains the cancer 

evolutionary history, which denotes the evolution of tumors 

over time, and the number of nodes in the tree indicates the 

mutation accumulation. Here we focus on the tree structure. 

The structure of the cancer evolutionary tree only refers to the 

height of the tree, depth of the nodes, and relationship among 

nodes and does not refer to the node size, nodeinformation, 

and edge lengths. We mapped the cancer evolutionary tree 

structure to a directed rooted tree, which we referred to as the 

evolutionary structure tree (Figure. 3). For example, Figure. 3 

is an evolutionary structure tree, which is mapped from the 

structure of the cancer evolutionary tree in Figure. 2(b), with 

node A as the root. 

In Figure. 3, node A is the root node as well as the parent 

node of node B, node B is the child node of node A, and 

nodes C and D are siblings or leaf nodes. 

 

Figure 1. Tumor initiation, tumor growth, and the corresponding cancer 

evolutionary tree. Characteristic driver mutations associated with cancer 

development and progression can be identified by reconstructing the 

evolutionary histories of cancerous cells. In Figure. 2(a), the evolutionary 

history of a tumor over time is obtained by replacing noncancerous cells (circle 

A or clone A) with one cancerous clone (circle B or founder clone B), which then 

develops into multiple cancerous subclones (circle C and D or subclones C and 

D). Tumor cells develop new clones by undergoing oncogenic mutations that 

have proliferative properties and allow the tumor descendants to expand 

relative to the other tumor clones. Each large circle (A, B, C, and D) refers to a 

clone. Each small circle (a, b, c, d, and e) refers to a mutation set providing 

selective advantages. Each clone inherits all of its parent’s mutations. For 

example, subclones A, B, C, and D carry mutation set a. 

2.5. Evolutionary Structure Tree 

An evolutionary structure tree (Figure. 4) is a three-tuple 

�	 � ��, �, �		
����, where � is a set of nodes including 

the root; � is a set of edges satisfying �	 ∈ 	�	 
 	�, which 

denotes an orientation away from the root; and 
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�		
���	denotes the root of the tree �. 

If ��, �� 	∈ 	�, then a relationship is established such that 

node � points to node �. Therefore, � is referred to as a 

child node of node �, and � is referred to as a parent node 

of node � , respectively denoted as �	 � 	��������  and 

�	 � 	�����
���. 

 

Figure 2. Evolutionary structure tree obtained from the cancer evolutionary 

tree in Figure. 2(b). The cancer evolutionary tree contains information on 

cancer evolution and mutation accumulation. 

For each node � in tree �, the set of all children of node 

� is represented as ����, which also means that node � is 

linked to these children nodes; the set of all descendants of 

node �  (including its direct children and indirect 

descendants) is represented as	����; the height of the subtree 

rooted at node	� is represented as ����; and the number of 

nodes in the subtree rooted at node � is represented as ��. 

We also define three attributes for each node 	�	 �
	�����, ��, �����. 

 

Figure 3. An example of evolutionary structure tree. �		
��� is the node 

� , 	���� 	� 	2 , 	�� 	� 	 |����| 	� 	1	 � 	4	 � 	1	 � 	5 , ���"�
��� � 	3 , and 

���
���� 	� 	1. 

The height of tree �  denoted as ���"�
���  is the 

number of edges between the tree’s root node and its farthest 

leaf; the height of a tree with only root node is 0. The depth 

of node � denoted as ���
���� refers to the number of 

edges from node	� to the tree’s root node, with the depth of 

the root node being 0. 

The set of all children of node � is $�%, �&, . . . , �(). A 

sequence of n child subtrees 〈
�+ , 
�, , . . . , 
�-〉 of node � in 

tree � and the � child subtrees are placed from left to right 

in the ascending order of the index. 

2.6. Canonical-Form Transformation for Unique Tree 

Structure 

Some evolutionary structure trees are similar in structureor 

isomorphic. We hope that these trees can have a unique tree 

structure. Isomorphic trees that do not have an identical 

structure will be clustered into different groups because of 

the differences, resulting in the subsequent clustering 

problem. 

Two trees are considered isomorphic when each node in 

one tree has a corresponding node in the other tree and vice 

versa; that is, two evolutionary structure trees �% 	�
	��%, �%, �		
��%��  and �& 	� 	 ��&, �&, �		
��&��  have a 

bijection between the node sets /:	�% →	�& such that ∀�, 

�	 ∈ 	�% , ��, �� 	∈ 	�% 	⇔ 	 �/���, /���� 	∈ 	�&  and 

/��		
��%�� 	� �		
��&�. Obviously, both trees will have 

identical number of nodes. 

We established a series of steps to solve the tree 

isomorphism problem and compare subtrees. The canonical 

form of an evolutionary structure tree can be obtained by 

performing a series of subtree exchanges, where the order 

of the siblings from left to right reflects the comparison 

results. 

We also performed the canonical-form transformation for 

modularization to identify a unique canonical form of each 

evolutionary structure tree. The canonical-form 

transformation involves three steps by which layer-by-layer 

exchange operations are executed from root to leaf until all 

the nodes are searched. The layer-by-layer search helps 

avoid the inconsistency in the information of subtrees 

caused by an irregular search and exchange. In this process, 

the exchange operations are first executed between all 

sibling nodes in the identical layer, followed by a search of 

child nodes in the next layer until all leaf nodes have been it 

has searched. The output of the canonical-form 

transformation is a unique canonical form of an 

evolutionary structure tree. 

2.6.1. Exchange Operation 

The exchange operation involves selection of two 

subtrees,	
�+  and	
�, , under node � in the rooted tree �, 

execution of the following three steps, and placement of the 

larger subtree on the right. 

2.6.2. Steps of the Canonical-Form Transformation 

Step 1. All subtrees under the nodes are placed from left to 

right according to height, such that the larger subtree is 

placed on the right (Figure. 5). Subtrees with identical 

heights are sorted using Step 2. 

As shown in Figure. 5, in Step 1, the height of the left and 

right subtrees is compared first, irrespective of the number of 

nodes. 

Step 2. When subtrees with identical height are 

encountered under the nodes, they are placed from left to 

right based on the number of nodes, such that the larger 

subtree is placed on the right (Figure. 6). Step 2 involves 

counting the number of nodes in each subtree. Therefore, 

this step can be time consuming when the size of the 

evolutionary structure tree is large. In addition, some 

subtrees may have an identical number of nodes. This 

problem can be solved using Step 3. 
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Figure 4. Exchange of the child subtrees of the root in Step 1. Nodes	�% and 

�& are children of node �,	
�+ is the subtree that has node �% as a root, and 


�, is the subtree that has node �& as a root. Because the height of 
�+is 3 

and the height of 
�, is 2, the larger subtree 
�+ is placed on the right. 

 

Figure 5. Exchange of the child subtrees of the root in Step 2. Nodes �% and 

�& are children of node	�,	
�+ is the subtree that has node �% as a root, and 


�, is the subtree that has node �& as a root. Because the number of nodes in 


�+ is 3 and the number of nodes in 
�, is 2, the larger subtree	
�+ is placed 

on the right. 

 

Figure 6. Exchange of the child subtrees of the root in Step 3. Node	�% and �& 

are children of node �, 
�+ 	is the subtree that has node �% as a root, and	
�, 
is the subtree that has node �& as a root. After calculation of the number of 

nodes in the child subtrees	
�+	and 
�,, the list for 
�+ is	435 and that for 
�, 
is 42, 15. Therefore, the larger subtree 
�+ is placed on the right. 

Step 3. When the subtrees under the nodes have identical 

heights and numbers of nodes, they are placed in 

lexicographical order from left to right (Figure. 7). The 

following is an example of the comparison method by 

lexicographical order. Two subtrees rooted at nodes	� and �, 

respectively, have a sequence of 6  and �  child subtrees 

〈
�1 , 
�2 , . . . , 
�6 	〉  and 〈
�1 , 
�2 , . . . , 
��〉 . These two 

sequences are respectively used to calculate the number of 

nodes in the subtrees, which is stored as two lists 

4�7+ , �7, , . . . , �785  and 	4��+ , ��, , . . . , ��-5 . Two orderedlists 

4�7+′, �7,′, . . . , �78′5  and 4��+′, ��,′, . . . , ��- ′5  such that 

�7+′ : 	 �7,′ :. . . : 	 �78′  and ��+′ : 	 ��,′ :. . . : 	 ��-′  are 

then used to compare the two items of order �7;  and ��; 
according to the index � from 1 to 6 or � until the two 

items are no longer equal for comparison. Finally, the larger 

item determines that the subtree should be placed on the right. 

Figure. 8-10 present a series of examples of the 

canonical-form transformation. 

 

Figure 8. Labeling of nodes helps to clearly indicate the exchange operations. 

 

Figure 9. Exchange of the child subtrees of node 1 in Step 3. Because the list 

for the left subtree is 43, 35 and that for the right subtree is 43, 2, 15, the 

subtree order is exchanged. 

2.6.3. Canonical-Form Transformation Algorithm 

The tree structures of two trees can be compared using the 

three steps described in Section 2.6.2 in the sequential order. 
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We assume that the structure of tree �1 is greater than that of 

tree �2	��1 	 < 	 �2�, the structure of tree �1 is smaller than 

that of tree �2	��1 	 = 	 �2�, and the structure of tree �1  is 

equal to that of tree �2	��1 	 �� 	 �2�. 

 

Figure 10. Exchange the child subtrees of node 2 in Step 1. Because the height 

is 1, 1, 0 from left to right, the subtree order is exchanged. 

 

Figure 11. Algorithm 1 Canonical-Form. 

Some basic functions of the algorithm are as follows. 

1) Append(): appends an element to the end of the list 

2) TreeHeight(): obtains the height of the tree 

3) TreeNodeCount(): obtains the number of nodes in the 

tree 

4) Length(): counts the number of characters in a list 

The Canonical-Form algorithm (Algorithm 1) can be 

used to achieve a unique canonical form of the tree. 

The Link-Child algorithm (Algorithm 2) provides all the 

child nodes of the node (not including indirect offspring) and 

an iterative search idea to the Canonical-Form algorithm to 

enable it to search nodes layer by layer from root to leaf until 

all the nodes are searched. 

 

Figure 12. Algorithm 2 Link-Child. 

The HeightNode-Comparison algorithm (Algorithm 3) is 

used for comparing the tree structure of two subtrees. This 

algorithm is only run in Steps 1 and 2. 

 

Figure 13. Algorithm 3 HeightNode-Comparison. 

The LGO-Comparison algorithm (Algorithm 4) is used 

when two subtrees have identical heights and numbers of 

nodes. The comparison is performed in lexicographical order 

(Step 3). 

The LGO algorithm (Algorithm 5) is used by the 

Trees-Sort algorithm to output a list for all subtrees in 
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lexicographical order sorted from large to small. 

Because all child subtrees of each node are placed from 

left to right, we propose the Trees-Sort algorithm. The 

Trees-Sort algorithm (Algorithm 6) compares the subtree 

structures from small to large, and the output of the 

Trees-Sort algorithm is used to sort and order the subtrees. 

The Compare-Merge algorithm (Algorithm 7) used merge 

sort to sort the subtrees for comparison in the Trees-Sort 

algorithm. 

 

Figure 14. Algorithm 4 LGO-Comparison. 

 

Figure 15. Algorithm 5 LGO. 

 

Figure 16. Algorithm 6 Trees-Sort. 

2.7. Tree Similarity Comparison and Cost of Tree Similarity 

Comparison 

Here we present the three operations involved in the tree 

similarity comparison method and the calculation method for 

comparing the differences in tree structure costs [32]. 

2.7.1. Operations in Tree Similarity Comparison 

According to the previous canonical-form transformation, 

each evolutionary structure tree has a unique structure. The 

degree of structural similarity between two evolutionary 

structure trees can be compared by performing three 

operations, following which a cost is determined, which is 

considered the difference in similarity between the two 

evolutionary structure trees. The cost is a real number. 

 

Figure 17. Algorithm 7 Compare-Merge. 

The main idea of tree similarity comparison is transforming 

one tree � into another tree �’ for comparison by performing 

the three operations. 

Operation 1. Deleting node � (denoted as	����
����). In 

this operation, the position of the deleted node	� is identified 

in the original tree and then the position of the parent node of 

the original node � is changed to point to the new child 

nodes. 

If � ? �		
��� , then �′ � � @ $�) , �’ � � @
$��, A�|A	 ∈ ����) @ $������
���, ��) �
$������
���, A�|A	 ∈ 	����). 
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In Figure 18, node � is the node to be deleted. Therefore, 

node �	is first deleted, and then, the position of node � (the 

parent node of the original node �), which originally pointed 

to node	�, is changed to point to nodes	B, �, and �. 

Operation 2. Inserting node � under node � (denoted as 

��C��
����). 
Before performing this operation, the following actions 

must be performed: compare whether the children of node � 

in the original tree �1 intersect with the children of node � in 

tree �2. If an intersection exists, node � points directly to this 

set. This method can help determine the relationship of the 

node to other nodes and reduce redundant operations, thereby 

reducing costs (the insertion operation without and with the 

aforementioned method is presented in Figure 19 and 20, 

respectively). 

 

Figure 18. Deletion operation. 

 

Figure 19. Insertion operation. 

 

Figure. 20. Insertion operation (cost reduction). 

 

Figure 21. Moving operation. 

We have �′ � � � $�), �’ � � @ $��, A�|A ∈ ���� ∩

�′���) � $��, ��) � $��, A�|A ∈ ���� ∩ �′���). 

In Figure 19, the parent node of nodes �, B, and � is 

directly changed. However, in the method shown in Figure 

20, tree �& is compared with tree �% to verify whether an 

intersection exists. It is found that node a is only present in 

tree �%  and not in tree �& , indicating no intersection. 

Therefore, during the insertion operation, the state of node � 

need not be changed. This method helps reduce the cost. 

Operation 3. Moving node	� to be positioned under node	� 

(denoted as 6	��7���). 
To move the position of a node, the node is first deleted 

and then inserted at the required position. Thus, both delete 

and insert operations are used (Figure 21). 

Moreover, details such as the position of nodes in the tree 

and the relationship of the node with other nodes should be 

considered in the operations. 

2.7.2. Cost of Tree Similarity Comparison 

A similarity comparison between two trees, �% and �&, 

yields a cost, which is a real number, after every operation, 

E�. The cost of each operation is denoted as F�E��. 
If EG � $E�%, E�&, . . . , E�()  is an operation sequence, 

then the cost of a sequence of operations can be represented 

as F�EG�. 
If EG is an operation sequence used for transforming tree 

�% into tree �&, then the cost from �% to �& is defined as 

F��% → �&�. Moreover, the cost of tree similarity comparison 

between two trees, �%  and �& , can be defined as 

F��%, �&� � min$F��% → �&�, F��& → �%�). 

2.7.3. Computing the Cost of Tree Similarity Comparison 

The cost of tree similarity comparison is influenced by the 

position of the node, size of the tree (or the number of nodes), 

height of the tree, depth of the node, number of descendants 

of the node (the size of the subtree having the node as a root), 

and relationship of the node to other nodes. These factors 

should be considered when performing tree similarity 

comparison between two trees. For example, first, an 

operation performed on a node at a shallow depth will incur a 

higher cost than that performed on a node at a deeper region; 

moreover, the cost will be lower when the node is near the 

bottom of the tree. Second, a node that has more descendants 

will incur a higher cost than a node with fewer descendants. 

In general, the node with more descendants will be located at 

a shallow depth, with some exceptions. The tree structure 

should be evaluated before conducting the operation. Third, 

performing operations on a larger tree will incur a lower cost 

than performing operations on a smaller tree. Finally, two 

trees may differ only in the position of some nodes, and the 

operation of moving the node will incur a lower cost than the 

operation of deleting or inserting the node. 

The cost of the three operations can be calculated using the 

following formulas. 

1) Cost of deletion operation (Figure 22) 

F�����
�� � ���"�
��� @ ���
���� � 1 � |����|/|�| (1) 

where � is a nonroot node, ���"�
��� is the height of tree �, 
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���
����	 is the depth of node � , 	|����|	 is the number of 

descendants of node � (direct and indirect offspring), and � is 

the original node set before the deletion. In general, 

���
���		
���� 	� 	1, and	���
���� < 1 if �  is a nonroot 

node. If node �  to be deleted is a leaf node, ���� � ∅ and 

|����| � 0. This means that no extra cost is incurred in the 

deletion of a leaf node. When � is the lowest leaf node in the tree 

����"�
��� � ���
����� , deleting �  will incur a minimal 

where � is a nonroot node, ���"�
��� is the height of tree �, 

���
����	is the depth of node � ,	|����|	is the number of 

descendants of node � (direct and indirect offspring), and � is 

the original node set before the deletion. In general, 

���
���		
���� 	� 	1, and	���
���� < 1 if � is a nonroot 

node. If node � to be deleted is a leaf node, ���� � ∅ and 

|����| � 0. This means that no extra cost is incurred in the 

deletion of a leaf node. When � is the lowest leaf node in the 

tree ����"�
��� � ���
����� , deleting �  will incur a 

minimal cost. The final cost is F�����
����� � 1/|�	|. 

 
Figure 22. An example of cost of deletion operation: ���"�
��� � 	2 , 

���
���� 	� 	1 , |����| 	� 	3 , |�	| 	� 	5 . Therefore, the deletion cost is 

given by �2 @ 1 � 1 � 3�/5	 � 	1. 

2) Cost of insertion operation (Figure 23) 

FN��C��
7���O � ���"�
��� @ ���
���� � 1 � |����|/|�| (2) 

where ���"�
��� is the height of tree �, ���
���� is 

the depth of node �, |����| is the number of descendants 

that �  obtains after it is inserted (direct and indirect 

offspring) and � is the original node set before the insertion. 

The insertion operation differs from the deletion operation in 

some aspect. Node � cannot be inserted at the root position 

because the root cannot be changed arbitrarily. Therefore, the 

node can only be inserted under the root. The calculation of 

the depth of inserting node � also differs from that in the 

deletion operation. Because before doing the operation, we 

only know to insert the node �  under the node � , so 

the	���
���� will be used. 

 

Figure 23. An example of cost of insertion: ���"�
��� 	� 	2, ���
���� 	�
	1, |����| 	� 	0, |�	| 	� 	4 (before inserting node v, the size of the tree T is 4). 

Therefore, the insertion cost is given by	�2 @ 1 � 1 � 0�/4	 � 	0.5. 

3) Cost of moving operation (Figure 24) 

FN6	��7���O � 1/24FN����
����O � F���C��
7����5 

�|�| @ 2�/|�|              (3) 

where	|�	| 	< 	2 (the tree has a root and at least two nonroot 

nodes) and � ? �����
��� . Note that ��C��
7���  will be 

performed on a tree without node �. In this formula, both the 

deletion and insertion operations are considered because the 

operation of moving involves deleting the node first and then 

inserting it. Some factors are used for balancing this operation. 

The factor 1/2 adjusts the cost of operation because the node is 

not actually deleted from and inserted back to the tree. 

Another factor �|�| @ 2�/|�|	adjusts the cost to ensure that in 

an extreme case where � is the only node other than the root, 

its moving cost is zero because it will obtain the identical 

result after doing the operation of moving the node and 

actually it can’t be moved. Moreover, as the number of nodes 

in the tree increases, the effect of the factor �|�| @ 2�/|�| 
on the operation of moving the node becomes weaker. 

 

Figure 24. An example for cost incurred while moving a node by first deleting 

it (���"�
��� 	� 	2, ���
���� 	� 	2,	|����| 	� 	0, |�	| 	� 	5; therefore, the 

deleting cost becomes 	�2 @ 2 � 	1 � 	0�/5	 � 	0.2�	 and then inserting it 

( ���"�
��� 	� 	2 , ���
���� 	� 	1 , |����| 	� 	0 , 	|�	| 	� 	4  (before 
insertion of node v, the size of the tree T is 4); therefore, the inserting cost 

becomes �2	 @ 	1	 � 	1	 � 	0�/4	 � 	0.5�. The final moving cost is given by 

�1/2�	
	�0.2	 � 	0.5�	
	�5	 @ 	2�/5	 � 	0.21. 

Figure 25 presents an example of calculating the cost of tree 

similarity comparison between two trees. 

2.8. Patient Clustering 

We used tree similarity comparison (mentioned in Section 

2.7) to compare the evolutionary structure trees to obtain 107 

× 107 matrix data. Because patients exhibit two cancer types, 

nonrecurrent and recurrent, we divided the obtained matrix 

data into two clusters through k-means clustering. We also 

used the average silhouette method to measure the quality of 

the clusters (Figure 26) [33]. The average silhouette method 

combines two factors, cohesion and separation. It can be used 

to evaluate the impact of different algorithms or different 

operating modes of algorithms on the clustering results based 

on the same original data. The optimal number of clusters is 

two (Figure 26). Now, each patient obtains new information, 

which is an attribute classified as cluster 1 or cluster 2. 

2.9. Cancer Recurrence Rate Prediction 

We collected clinical data of each patient, including age, 

gender, tumor site (site), tumor staging (stage), tumor invasion 

stage (T), and tumor nodal stage (N). Age comprises two 

attributes, Young and Old, where Young refers to the age 
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group 0-65 years and Old refers to the age group 66 years and 

above. Gender comprises two attributes, Female and Male. 

Site comprises four attributes, Left, Right, Right and Left, and 

Unknown. Stage comprises two attributes, 2 and 3, where 2 

indicates cancer stage 1 and cancer stage 2, and 3 indicates 

cancer stage 3 and above. The feature of T comprises two 

attributes, Early and Late, where Early means T1 and T2 and 

Late means T3 and T4 (in TNM staging system). The feature 

of N comprises two attributes, 1 and 2, where 1 means N0 and 

N1 and 2 means N2 and N3 (in TNM staging system). We 

demonstrated the importance of tree similarity comparison in 

recurrent prediction. We established two groups, a control 

group and a test group, with one more clustering information, 

for final prediction and comparison. We used these two groups 

as the input to the Cancer Recurrence Rate Prediction (as 

shown in Figure 27.) and assessed whether the prediction of 

the recurrence rate improved on addition of one clustering 

data set (presented in Section 3). We then combined the 

clinical data of each patient and their respective clustering 

data. Figure 28 presents the combined distribution of all 

patient data. 

 
Figure 25. An example of tree similarity comparison between two trees, �% 

and �&, and the cost of transforming tree �% into tree �&. 

In the Cancer Recurrence Rate Prediction, we first divided 

the data into two types: training set and testing set. Of the 

data for 107 patients, data of 77 patients were included in the 

training set (80%) and those of 30 patients were included in 

the testing set (20%). Now, the training set contained 62 

nonrecurrent types and 15 recurrent types, and the testing set 

contained 15 nonrecurrent types and 15 recurrent types. To 

ensure the training set is balanced (1:1), we performed data 

augmentation. We used Synthetic Minority Over-sampling 

Technique (SMOTE) to generate new samples [34]. The 

basic principle of SMOTE is to analyze for minority samples 

and artificially synthesize new samples based on the minority 

samples and add them to the data set; thus, the recurrent type 

in the training set was increased to 62. Then, we used random 

forest to select important features and the first five features 

(Figure 29.) [35]. Finally, we use random forest, support 

vector machine (SVM), bagging [36], and boosting [37] to 

train the model and used the testing set to predict the results. 

 

Figure 26. Measurement of the quality of the cluster and determination of the 

optimal number of clusters. 

3. Experimental Results and Discussion 

In Figure 28, the left half presents the heatmap distribution 

of all 107 patients. This denotes the score distribution 

obtained by comparing tree structures with each other. The 

upper left corner is cluster 1, and the other is cluster 2. 

During comparison with other groups based on cluster 

analysis, a set of objects is clustered into the group with 

certain defined identical properties. We compared the 

differences in the tree structures using k-means clustering. 
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Figure 27. Cancer Recurrence Rate Prediction. 

Therefore, when the evolutionary structure trees in one 

group are compared with those in another group, the color 

distribution is significantly different. This means that the 

evolutionary structure trees that are not in the identical group 

do not have close scores, so the evolutionary structure trees 

in these two groups exhibit huge differences in the tree 

structure, such as tree height and number of nodes. In the 

right half of Figure 28, the clinical data are presented by a 

clustered sorting. This means that the clinical data are 

distributed according to the clustering data, which makes it 

convenient to observe the status distribution of each group. 

These clinical data are recurrent status, survival status, age, 

gender, tumor invasion stage (T), tumor nodal stage (N), 

tumor site (site), and tumor staging (stage). 

Table 1. Relationship between clustering information and clinical data. 

Clinical Data 
No. of the Patients in the Cluster 

p-value 
Cluster 1 Cluster 

Age   1 

Young (0 ∼ 65) 53 28  

Old (66 up) 17 9  

Gender   0.02449 

Female 41 13  

Male 29 24  

Site   0.3888 

Left 55 26  

Right 14 10  

Right and Left 1 0  

Unknown 0 1  

Stage   0.4493 

2 (Cancer stage 1, 2) 4 4  

3 (Cancer stage 3 up) 66 33  

T (Primary Tumor)   0.02749 

Early (T1, T2) 13 1  

Late (T3, T4) 57 36  

N (Regional Lymph Nodes)   1 

1 (N0, N1) 50 26  

2 (N2, N3) 20 11  

We also used the clustering information and clinical data 

for analysis. TABLE 1 indicates that the structure of the 

cancer evolutionary tree was associated with gender and 

tumor invasion stage. Early-stage (T1 and T2) patients tend 

to have a simpler structure of the cancer evolutionary tree 

than late-stage (T3 and T4) patients. For early-stage patients, 

the height of the cancer evolutionary tree is relatively small, 

the depth of the node in the tree is relatively low, and the 

number of nodes in the tree is relatively few. Cluster 2 

patients tend to have a more complicated structure of the 

cancer evolutionary tree than cluster 1 patients. For cluster 2 

patients, the height of the cancer evolutionary tree is 

relatively large, the depth of the node in the tree is relatively 

large, and the number of nodes in the tree is relatively high. 

Among our 107 CRC patients, the ratio of male to female is 

approximately 1:1. CRC with obvious gender differences 

affects males more than females, and males not only develop 

cancer more often but are also more likely to die from their 

disease [38-40]. Male patients tend to have a more 

complicated structure of the cancer evolutionary tree than 

female patients. 

 

Figure 28. Heatmap. According to the clustering information, 107 patients 

were divided into two clusters. The left half presents the score distribution 

obtained by comparing the patients’ tree structures. The right half presents the 

clinical data distribution when patients were divided into two clusters. 
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We divided the patients into two clusters according to the 

clustering information. Figure 30 presents the distribution of 

the number of SNVs between cluster 1 and cluster 2. The 

mean of cluster 1 is 162, and the mean of cluster 2 is 135. 

Finally, we used random forest, SVM, bagging, and 

boosting to predict the recurrence of these CRC patients. The 

optimal accuracy of 0.667 was obtained using the boosting 

model with one more clustering information (as shown in 

TABLE 2). 

Table 2. Improvements in recurrence rate prediction. 

Method 

Recurrence Rate Prediction Change in 

Prediction 

Rate (C - O) 

Clinical Data 

(O) 

Clinical Data + 

Cluster (C) 

Random Forest 0.533 0.567 0.034 

SVM 0.5 0.5 0 

Bagging 0.533 0.533 0 

Boosting 0.6 0.667 0.067 

 

Figure 29. Variable importance and variable selection 

4. Conclusion and Future Work 

In this study, we combined genetic data with clinical data 

and integrated them into cancer evolutionary trees for cancer 

recurrence prediction. Through tree similarity comparison, 

we obtained clustering information of all patients. Our results 

revealed that integrating the clustering information can 

improve the performance compared with using only clinical 

information. An accuracy rate of 0.667 was obtained for our 

model. If patients with new diagnosis of CRC receive therapy 

in NCKUH in the future, our model can be used for 

prediction according to their reconstructed cancer 

evolutionary tree and their clinical data. Finally, we can 

improve the model prediction accuracy based on whether 

recurrence is noted in these CRC patients in the future. 

Although the results indicate that the prediction of the 

cancer recurrence rate can be improved, many areas for 

improvement remain. In our study, we only collected data of 

107 patients, and the data types were unbalanced. 

Consequently, the amount of data as input for the machine 

learning model was insufficient. In the future, the amount of 

patient data and other information in the clinical data should 

be increased to help train machine-learning models. Another 

research direction is to apply the developed models for 

prediction in patients with other cancer types. 

 

Figure 30. Difference between cluster 1 and cluster 2. 
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