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Abstract: In recent years, great progress has been made in the research of RNA function, and more and more RNA 

functions have been discovered. The function of RNA is highly dependent on its 3D structure, the RNA tertiary structure 

includes the RNA 3D structure and RNA tertiary interaction, so the RNA tertiary structure prediction has also attracted 

extensive attention. There are many RNA tertiary structure prediction algorithms. According to the traditional classification 

methods, the existing RNA tertiary structure prediction algorithms can be divided into two categories: the RNA tertiary 

structure prediction algorithm based on knowledge mining and the RNA tertiary structure prediction algorithm based on 

physics. On this basis, this paper further refines the RNA tertiary structure prediction algorithm based on physics in 

traditional classification, and proposes a new refinement classification method based on conformational sampling method, 

namely RNA tertiary structure prediction algorithm based on physical fragment assembly conformational sampling method 

and RNA tertiary structure prediction algorithm based on Stepwise ansatz conformational sampling method. We make a 

comparative analysis of RNA tertiary structure prediction algorithms, and put forward some suggestions for improving the 

energy function in the next step, in order to find an RNA tertiary structure prediction algorithm that can achieve atomic 

accuracy. 
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1. Introduction 

Ribonucleic acid (RNA), as a genetic information carrier, 

exists in biological cells as well as some viruses and viroids. 

RNA has various functions in organisms, and its main 

function is to convert the genetic information stored in DNA 

into proteins, and to guide the synthesis of proteins. More 

and more attention has been paid to the function of RNA. In 

recent studies, non-coding RNA has been found to control 

protein synthesis, regulate transcription and translation. In 

addition, non-coding RNA has some more complex 

biological functions, such as dose compensation, chromatin 

regulation, genomic imprinting and nuclear tissue [1]. The 

newly discovered RNA molecular riboswitch can 

autonomously sense changes in metabolite concentration and 

regulate gene expression at different levels [2]. 

The function of RNA highly depends on its tertiary 

structure. Understanding the RNA tertiary structure is very 

important, which can not only help us to further understand 

the relationship between structure and function, but also 

provides theoretical basis for the design of targeted ribosomal 

drugs [3]. The experimental methods used to obtain the RNA 

tertiary structure mainly include x-ray crystallography and 

frozen electron microscopy. As the available conformations 

increases exponentially with the RNA length, using these 

experimental methods to determine the RNA tertiary 

structure is accurate and reliable when facing the current 

massive RNA sequences, but time consuming and expensive 

[4]. Therefore, it is very necessary to predict the RNA tertiary 

structure by using bioinformatics methods and techniques, 

combined with the known biological molecular structure and 

its functional characteristics. 
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2. RNA Tertiary Structure 

The RNA tertiary structure includes the spatial coordinates 

of all atoms in RNA (3D), and the spatial relationship 

between atoms embodied by atomic coordinates (tertiary 

interaction). There are three kinds of RNA folding structures 

in biology: primary structure (single-stranded base 

sequence), secondary structure (a collection of base pairs) 

and tertiary structure (spatial position of atoms) [5]. 

 
Figure 1. RNA three-dimensional (3D) structure. 

The essence of the tertiary structure in the folded structure 

is the spatial coordinates of all the atoms in RNA molecule 

(3D), which is shown in Figure 1. Although the RNA 

secondary structure has been able to provide us with a 

blueprint for RNA, RNA can only exert its normal function 

after forming a specific tertiary structure. Therefore, knowing 

the RNA tertiary structure can help us understand and 

analyze its function and further understand the involved 

physiological activities. 

The tertiary interactions mainly include bonded 

interactions, base interactions, hydrogen bond interactions, 

electrostatic interactions, van der Waals interactions, and 

other non-bonded interactions [6]. Among them, hydrogen 

bond interaction is the most important and characteristic 

interaction in RNA. Hydrogen bonds are widespread in RNA. 

As the bases are planar structures, as shown in Figure 2, the 

hydrogen donor/acceptor at the base edge can be 

approximately divided into three paired edges, i.e., Watson-

Crick edge (W), Hoogstein edge (H) and Sugar edge (S) [7]. 

 
Figure 2. Definition of three sides of nucleotide base, 

These edges can all be used as interaction edges. In addition, 

the paired edges also have cis-trans directionality. From this, 

we can know that in theory, four bases can form 12 kinds of 

hydrogen bond pairing modes [8], as shown in Table 1. 

Table 1. 12 hydrogen bond pairing modes. 

No. Glycosidic Bond Orientation Interacting Edges Symbol Default local strand Orientation 

1 Cis W/W  Anti-parallel 

2 Trans W/W  Parallel 
3 Cis W/H  Parallel 

4 Trans W/H  Anti-parallel 

5 Cis W/S  Anti-parallel 
6 Trans W/S  Parallel 

7 Cis H/H  Anti-parallel 

8 Trans H/H  Parallel 
9 Cis H/S  Parallel 

10 Trans H/S  Anti-parallel 
11 Cis S/S  Anti-parallel 

12 Trans S/S  Parallel 

 

The Cis W/W interaction was the basic element in the 

RNA helical region, while the other 11 hydrogen bond 

interactions constituted the RNA structural module and the 

RNA tertiary structural element. A-U Cis W/W, G-C Cis 

W/W, and G-U Cis W/W were known as canonical base 

pairs. However, the study founds that canonical base pairs 

accounted for only about 80% of the observed RNA 

molecules. Although noncanonical base pairs account for 

20%, they are important to ameliorate the accuracy of RNA 

tertiary structure prediction. Therefore, noncanonical base 

pairs are the key and difficult point of RNA tertiary structure 

prediction. 
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3. Algorithms of RNA Tertiary Structure 

Prediction 

The RNA secondary structure prediction with pseudoknots 

has been proved to be an NP-hard problem [9], and it can be 

concluded that the RNA tertiary structure prediction is also 

an NP-hard problem. RNA tertiary structure prediction 

algorithms can be divided into two types by traditional 

classification methods, Knowledge mining-based prediction 

algorithm (Knowledge Mining-based) and Physical-based 

prediction algorithm (Physics-based). In this paper, the 

Physics-based prediction algorithms are further divided 

according to the different conformational sampling methods. 

3.1. RNA Tertiary Structure Prediction Algorithm Based on 

Knowledge-mining 

3.1.1. Fragment Assembly-based Algorithms 

This kind of algorithm is to splice the known 3D RNA 

fragments into a tertiary structure satisfying the conditions by 

computer algorithm, also known as Graphics-based. MANIP 

[10] is a classical algorithm of this kind of algorithm, which 

allows users to form a complete RNA structure by 

assembling known 3D motif based on the secondary structure 

obtained by sequence alignment. However, this algorithm 

requires expert users to deeply master and understand the 

relevant knowledge of RNA structure, which is difficult for 

general users. 

3.1.2. Homology-based Algorithms 

The algorithm uses the known tertiary structure of the 

template sequence to determine the tertiary structure 

structure of the target sequence [11]. Typical algorithms 

include RNABuilder [12] and ModeRNA [13] which can 

contain post-translation information. The results of these 

algorithms depend on the template structure and alignment 

sequence, but it is difficult to find a suitable template RNA. 

3.2. RNA Tertiary Structure Prediction Algorithm Based on 

Physics 

According to the principle of biophysics, the algorithm 

finds out the conformation with the lowest free energy by 

searching the conformation space of RNA 3D structure. The 

algorithm is dynamic, and usually adopts Monte Carlo 

method or molecular dynamics simulation method [14]. The 

representative algorithms are FARNA, FARFAR, SWA and 

SWM. The key components of RNA tertiary structure 

prediction algorithm include molecular representation, degree 

of freedom, energy function and conformation sampling 

method [15]. Among them, the energy function and 

conformation sampling method are the key to ameliorate the 

accuracy of RNA tertiary structure modeling. In this paper, 

we put forward a new refined classification method based on 

conformational sampling, i.e., RNA tertiary structure 

prediction algorithm based on physical fragment assembly 

conformational sampling method and RNA tertiary structure 

prediction algorithm based on Stepwise ansatz 

conformational sampling method. 

3.2.1. Base on Physical Fragment Assembly 

The algorithm adopts a conformation sampling method 

based on a fragment assembly method, and on the basis, a 

physical energy function is introduced to guide the assembly 

process and assemble a 3D structure with lower energy, so 

that the problem that the traditional fragment assembly 

method is excessively dependent on a database is overcome 

to a certain extent, and the assembly precision of RNA 

fragments is improved. The representative algorithms are 

FARNA algorithm and FARFAR algorithm. 

(1) Fragment Assembly of RNA (FARNA) 

Rhiju Das and David Baker describe a physically based 

energy function and fully automated algorithm, which is 

inspired by Rosetta structure prediction method, which seeks 

the lowest energy tertiary structure of a given RNA sequence 

without using evolutionary information to minimize the 

dependence of fragment assembly on the database [16]. 

FARNA is an de novo method, which is different from the 

previous method. During conformational sampling, the 

nucleotide fragments in the initial structure were randomly 

replaced by the Monte carlo method while fragment 

assembly was performed. Moreover, when selecting RNA 

template, almost all the base pairing modes are included in 

the rRNA molecules determined by experiments, so that the 

RNA template obtained can be more comprehensive, so 

FARNA could effectively predict various RNA noncanonical 

base pairs. 

(2) Fragment Assembly of RNA with Full-atom 

Refinement (FARFAR) 

Since the RNA tertiary structure obtained by FARNA 

method is not accurate enough, an algorithm using statistical 

potential is designed based on FARNA by adding more 

accurate all-atom energy function. The FARFAR algorithm is 

highly accurate and achieves de novo structure prediction and 

design of complex motifs with unprecedented resolution, 

combining our previous FARNA protocol with Rosetta 

energy function [17]. 

After a rigorous test of FARFAR on a benchmark set of 32 

motifs, it is found that some RNA did not achieve high 

resolution, Rhiju Das observed the bottleneck of this 

sampling method that conformations close to the natural 

conformation could not be sampled and lower energy could 

not be achieved. 

3.2.2. Base on Stepwise Ansatz 

It is impossible to realize high-accuracy structure 

prediction of RNA which is due to the imcomplete sampling 

of biopolymers with many degrees of freedom. So Rhiju Das 

put forward a effective hypothesis, called the "Stepwise 

ansatz", which is used to recursively construct a well-packed 

atomic detail model in small steps, enumerating millions of 

conformations for monomers, and covering all build-up paths 

[18]. 

(1) Stepwise Assembly (SWA) 

SWA is the implementation of “Stepwise ansatz” in 

Rosetta framework. The RNA loop-modeling problem is a 
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typical case of high-accuracy structure prediction, which is 

challenging. In order to verify the SWA algorithm, we 

applied the SWA on a benchmark consisting of 15 single-

stranded loops, and the results show that SWA is valid in all 

tests and SWA is obviously better than FARFAR in modeling 

accuracy. Futhermore, blind trail is the most stringent test for 

the RNA structure prediction algorithm. We therefore attempt 

a blind high-accuracy RNA structure modeling and test the 

model by a chemical mapping experiment. Finally, we draw a 

conclusion that SWA is an ab initio build-up and enumerative 

algorithm, and the overall performance of this algorithm is 

superior to the existing knowledge mining-based methods for 

RNA tertiary structure prediction. 

For SWA method, the ability of conformational sampling 

is no longer its bottleneck, and the inaccuracies of Rosetta 

all-atom energy function affects its accuracy. 

(2) Stepwise Monte Carlo (SWM) 

As we all know that the accurate prediction of 

noncanonical base pairs is the key to ameliorate the accuracy 

of RNA modeling. SWM could predict the noncanonical base 

pairs of complex RNA structures [19]. The algorithm 

randomly performs the add or delete moves which are guided 

by the Rosetta all-atom free energy function, selecting a 

random position on which to prepend a new nucleotide, 

rather than enumerating all of the additions at all possible 

positions as was implemented in the SWA algorithm. SWM 

procedure is shown in Figure 3. 

 
Figure 3. SWM procedure. 

 
Figure 4. SWM method is compared with the SWA method based. 

A series of tests have been carried out on this method. 

First, the algorithm efficiently traverses the minimum of the 

energy landscape, allowing the ab initio recovery of a set of 

15 single-stranded RNA loops, which proves that the lastest 

updates of Rosetta energy function improved modeling 

accuracy of single-stranded RNA loops. In addition, the 

SWM algorithm is compared with the SWA algorithm based 

on the benchmark, and the results are shown in Figure 4. 

Compared with SWA, SWM algorithm needs less CPU time 

to converge on the premise of ensuring the modeling 

accuracy. 

Second, on a larger benchmark consisting of 82 complex 

and multi-strand RNA motifs, experimental results show that 

SWM can effectively recover complex noncanonical pairs. 

Third, we applied SWM algorithm to three tetraloop/ 

receptors with unsolved structures, and prospectively 

validated these models through chemical mapping 

experiment. 

Last, SWM solved a recent RNA-Puzzle and successfully 

achieved blind prediction of all noncanonical pairs of the 

Puzzle. As shown in Figure 4, the left figure in Figure 5 

shows the modeling result of RNA Puzzles 18 using SWM 
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algorithm, and the right figure shows the subsequently 

released crystal structure diagram, which are basically the 

same. That is to say, SWM successfully achieved blind 

prediction of all noncanonical pairs of Puzzle 18. RNA-

Puzzles was a group blinded experiment similar to CASP for 

the evaluation of RNA tertiary (3D) structure prediction to 

identify capacity and bottlenecks in RNA prediction 

problems. 

These results indicate that step-by-step nucleotide structure 

formation is the principle of high-resolution RNA structure 

prediction algorithm. And SWM algorithm could greatly 

improve the calculation speed of ab initio structure 

prediction. 

4. Conclusion and Perspective 

RNA tertiary structure prediction is in the primary 

development stage at present. Modeling the complex 

structures of RNA and other molecules is more challenging 

due to the limited number of structures found in available 

experiments and the lack of data on complex interactions 

between RNA and other molecules. There is no perfect 

algorithm to solve the problem of RNA tertiary structure 

prediction. In this paper, physical-based RNA tertiary 

structure prediction algorithms is subdivided according to the 

conformation sampling method. 

The bottleneck of RNA tertiary structure prediction 

algorithm based on physical fragment assembly is the lack of 

conformational sampling ability. For example, the assumption 

of FARFAR method limits its conformational sampling ability. 

RNA tertiary structure prediction algorithm based on 

"Stepwise ansatz" hypothesis is to add one residues at a time 

rather than directly listing all possible conformations of RNA, 

nor through the low-resolution Coarse-grading or through 

small perturbations to fully build conformations, which is a 

great progress in the field of RNA tertiary structure prediction. 

The RNA tertiary structure prediction algorithm based on 

Stepwise ansatz conformational sampling method achieves 

efficient conformational sampling and overcomes the problem 

of poor conformational sampling ability compared with other 

prediction algorithms. 

The main factor limiting the high-precision modeling of 

the current tertiary structure prediction algorithm is the 

inaccuracies of Rosetta all-atom energy function. With the 

advancement of physicochemical technology, as shown in 

Table 2, the energy function is no longer limited to the 

Rosetta energy function for protein, and more energy 

parameters specific to RNA can be found. The discovery of 

these parameters is conducive to further improving the 

accuracy of the energy function and the modeling accuracy 

[20]. In particular, the test on the hepatitis C virus internal 

ribosome entry site indicates that a modified torational 

potential may address the problem that low modeling 

precision which is lead by energy functions, such as the 

modification of rna_torsion, rna_sugar_close and other RNA 

torsion terms. 

  
Figure 5. SWM blind (left) and Crystallographic (right). 

Table 2. Energy terms for biomolecules. 

Biomolecule Term Biological Process Unit 

Proteins 

fa_atr Attractive energy between two atoms on different residues separated by distance, d kcal/mol 

fa_rep Repulsive energy between two atoms on different residues separated by distance, d kcal/mol 

fa_intra_rep Repulsive energy between two atoms on the same residue, separated by distance, d kcal/mol 

fa_elec Energy of interaction between two non-bonded charged atoms separated by distance, d kcal/mol 

hbond_sc Energy of side chain to side chain hydrogen bonds kcal/mol 

fa_dun Probability that a chosen rotamer is native-like given backbone Ø angles kT 

RNA 

fa_stack π-π stacking energy for RNA bases kT 

stack_elec Electrostatic energy for stacked RNA bases kT 

fa_elec_rna_phos Electrostatic energy (fa_elec) between RNA phosphate atoms kT 

rna_torsion Knowledge-based torsional potential for RNA kT 

rna_sugar_close Penalty for opening an RNA sugar kT 
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All in all, The function of RNA is highly dependent on its 

3D structure, so the RNA tertiary structure prediction is very 

important. Before the RNA structure prediction has reached 

the level of atomic accuracy, this problem is still concerned 

by people. With the improvement of the algorithm, especially 

the emergence of SWM and other machine learning methods 

makes the modeling accuracy and speed have been improved, 

RNA tertiary structure prediction algorithm will be able to 

better provide the basis for RNA function research. 
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