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Abstract: Biclustering is a data mining technique used to analyze gene expression data. It consists of classifying subgroups of 

genes that behave similarly under subgroups of conditions and can behave independently under other conditions. These 

discovered co-expressed genes (called biclusters) can help to find specific biological aims like finding characteristics of a 

specific disease. A large number of biclustering algorithms have been developed. Generally, these algorithms give as output a 

large number of overlapped biclusters. The visualization of these biclusters is still a non-trivial task. In this paper, we present a 

new approach to display biclustering results from gene expression data on the same screen. It is based on a two-dimensional 

matrix where each bicluster is represented as a column and each overlap between a set of biclusters is represented as a row. We 

illustrated the usefulness of our method with biclustering results from real and synthetic datasets and we compared it to other 

techniques that concentrate on biclustering overlaps issue. The method is implemented in a web-based interactive visualization 

tool called VisBicluster available at http://vis.usal.es/~visusal/visbicluster. 
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1. Introduction 

Genomic data analysis often involves identifying groups of 

biological entities (e.g., genes) that exhibit similar behavior 

under certain conditions. Traditional clustering algorithms 

group genes with similar expression patterns across all 

conditions [1-3]. However, biclustering algorithms can 

identify groups of genes that coexpress only under a subset of 

conditions, which can be more informative for certain 

biological questions [4]. Biclustering has two main theoretical 

advantages over traditional clustering: Bidimensionality; 

Biclustering groups both genes and conditions together, while 

traditional clustering only groups genes or conditions. This 

allows biclustering to identify more complex patterns in the 

data. Overlap; Biclustering allows genes to belong to multiple 

biclusters, while traditional clustering only allows genes to 

belong to a single cluster. This is more realistic, as genes can 

be involved in multiple biological processes. 

Biclustering has been successfully applied to a wide range 

of genomic data analysis tasks, including identifying 

differentially expressed genes or discovering co-regulated 

genes. Biclustering is a powerful tool for genomic data 

analysis, and new biclustering algorithms are being developed 

all the time [5]. As genomic data becomes increasingly 

complex, biclustering is likely to play an even more important 

role in genomic data analysis in the future. 

Visualization techniques are needed to facilitate the 

extraction of knowledge from the analyzed data since they 

provide abstract and mental models of information [6]. In fact, 

visualization exploits visual intelligence to ameliorate our 

abstract intelligence. By creating interactive visual 

representations, visualization can exploit human perceptual 

and cognitive capabilities for solving many kinds of problems 

[7]. However, resolving all visualization issues needs to 

consider many research fields at once among them we can cite 

Human-Computer Interaction (HCI), data mining, and others. 

Recently, Information Visualization (InfoVis) and Visual 

Analytics are well-considered in many application areas such 

as bioinformatics which is not beyond the scope of 
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visualization, to fully achieve the visual representation based 

on the declared objectives. 

Visualizing biclustering results is an interesting process to 

infer patterns from the expression data [8]. However, given 

the special characteristics of biclustering, its application to 

gene expression data often generates a large number of 

overlapping groups of biclusters, which are very hard to 

present in an informative way in a single view [9, 10]. In fact, 

mapping the biclustering results in one visual form is a 

non-trivial task. The most popular techniques to visualize a 

single bicluster are heatmaps and parallel coordinates [11-13]. 

The difficulty arises when a bioinformatician or an analyst 

wants to visualize a set of biclusters on the same screen [9, 10]. 

Also, sets and sets-relations visualization techniques have 

emerged as a possible solution to better visualize 

bioinformatics data such as biclustering results of gene 

expression data [14-16]. 

In this paper, we introduce a novel approach to visualize 

biclusters and their respective overlaps. Our method is based 

on a two-dimensional matrix, where each bicluster is 

represented by a column and each overlap between a group of 

biclusters is represented by a row. 

2. Two-Dimensional Matrix Visualization 

Technique 

We detail the main characteristics of our visualization 

method. We first introduce how biclusters and their 

corresponding overlaps are depicted. Then, we focus on the 

detailed view where elements (genes and conditions) of single 

biclusters or overlaps are represented as heatmaps [17]. Our 

technique is invented based on a sophisticated combination of 

a modified set visualization technique used to layout the 

generated biclusters in a two-dimensional matrix where each 

bicluster is represented as a column and each overlap between 

a set of biclusters is represented as a row and a traditional 

visualization technique which is heatmaps used to visualize 

single biclusters and overlaps between them as gene 

expression matrices [18, 14]. 

2.1. Matrix of Overlaps 

In order to convey biclustering overlap in a scalable way, 

we focused on such overlaps as the main entity in our 

visualization (see Figure 1). 

Three biclusters and their overlaps are represented based on 

the proposed technique. The three biclusters are represented as 

a Venn diagram [19] (Figure 1a). Zones 1, 2, and 3 depict 

exclusive elements (genes and/or conditions) of B1, B2, and 

B3, respectively. Zone 4 encodes the overlap (shared elements) 

between B1 and B2. Zone 5 illustrates the overlap between B2 

and B3, while Zone 6 depicts the overlap between B1, B2, and 

B3. Gray circles depict elements of each zone. In addition, our 

described visualization technique is based on a 

two-dimensional matrix where individual biclusters are the 

columns and overlaps between biclusters are the rows (Figure 

1b). Each bicluster that participates in any overlap is 

represented by a cell. The matrix is laid out based on all of the 

occurring overlaps between biclusters. Only biclusters that are 

present in an overlap will be represented with colored cells, 

which are encoded based on a white-to-black color scale. The 

more genes and conditions two or more biclusters share, the 

darker the cell color (Figure 1b). We chose the white-to-black 

color scale because it is the easiest scale for the human eye to 

perceive hue changes [7]. Rows with only one cell contain 

genes or conditions that are unique to a particular bicluster, 

while rows with two or more cells contain genes or conditions 

that are shared by multiple biclusters. For example, the cell of 

the intersection between row 1 and B1 depicts genes and 

conditions of B1 not shared with any other biclusters. It’s the 

same case for rows 2 and 3 which encode exclusive genes and 

conditions for biclusters 2 and 3. Row 4 depicts the overlap 

between B1 and B3. Row 5 depicts the overlap between B2 

and B3, while row 6 depicts the overlap between all three 

biclusters B1, B2, and B3. Based on the used color scale, we 

can note that B1 has the largest number of exclusive elements 

(genes and conditions), and the overlap between B1 and B2 is 

also the largest one. With this method of visualization, it is 

easier to know which biclusters are not overlapped. In our case, 

there is no exclusive overlap between B1 and B3. 

 

Figure 1. Bicluster visualization concept. (a) Venn diagram representation. (b) Two-dimensional matrix representation. Each column corresponds to a bicluster 

while rows of the matrix depict possible overlaps. Each intersection, if exists, between a column and a row is shown as a cell. 
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Figure 2. Overview of the matrix of overlaps visualization showing 

biclustering results with 20 biclusters and a total number of overlaps, equal to 

30. The Figure shows data from a synthetic microarray example [21] and the 

biclusters generated by Bimax biclustering algorithm [22]. 

Two-dimensional matrix visualization of biclustering 

results is a clear and scalable approach, especially for large 

numbers of biclusters. It avoids the clutter of graph 

representations and depicts biclusters as simple columns with 

minimal space requirements [20, 16]. 

Figure 2 shows an example of a biclustering result with 20 

generated biclusters. Cells are encoded based on a 

white-to-black color scale, as well as the names of columns 

(i.e., names of biclusters). So, the more genes and conditions a 

bicluster contains, the darker is its name. 

2.2. Selection and Highlighting 

VisBicluster supports linking and brushing. Hence, selected 

columns or rows of the overlap matrix are shown on the right 

side of the interface as heatmaps. In fact, a click on column 

names shows the corresponding gene expression profile as a 

heatmap. Analysts can visualize the heatmap of an overlap or 

set of overlaps. To select rows, the analyst needs to click on 

each number of chosen rows. Then, double-clicking on one of 

the selected rows shows the corresponding heatmap (see 

Figure 3). To show the heatmap of one row, the analyst can 

either double-click on its number or click in any colored cell 

of the selected row. With such a technique, analysts can 

identify easily which biclusters or overlaps a single gene or 

condition is associated with. 
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Figure 3. Selection results. (a) Heatmap of bicluster17. (b) Heatmap of overlap14. (c) Heatmap of overlaps 16, 17, and 20. 

Highlighting biclusters and overlaps on hover provides 

analysts with valuable insights into the data like knowing the 

number of genes, the number of conditions, the participated 

biclusters in an overlap, the number of participated biclusters 

in an overlap, and the name of a bicluster. When hovering over 

a column name, the analyst can see as a tooltip the bicluster 

name as well as its size (number of genes and conditions). 

When hovering over a row number, the analyst can see the 

number of overlaps, the total number of overlapped biclusters, 

the overlap size, and a list of the participating biclusters. 

Similarly, hovering over a filled cell shows the overlap details 

and highlights the corresponding column and row of the 

matrix (see Figure 4). 

 

Figure 4. Details after hovering over. (a) A column name. (b) A row number. (c) A cell. Hovering over a filled cell highlights the column and row that belong to 

them. 
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2.3. Filtering, Sorting, and Zooming 

Interactive visualization tools like VisBicluster allow 

analysts to explore and analyze data in new and innovative 

ways. By applying filters to the visualized data, analysts can 

simplify the layout, focus on subsets of results, and gain 

insights that would be difficult to see otherwise (see Figure 5). 

VisBicluster offers five kinds of filters that can be used to 

modify the layout of biclustering results: 

1. Minimum genes/conditions number of overlaps: If this 

filter is chosen with parameter n, only overlaps with 

more than n genes or conditions are drawn. 

2. Minimum number of overlapped biclusters: If this filter 

is chosen with parameter n, only overlaps with more or 

equal to n overlapped biclusters are drawn. 

3. Maximum number of overlapped biclusters: If this filter 

is chosen with parameter n, only overlaps with less or 

equal to n overlapped biclusters are drawn. 

4. Size of biclusters: If this filter is chosen with parameter n, 

biclusters more/less/equal to n genes or conditions are 

dropped and the matrix is built again with the rest of 

biclusters. 

5. Rate of overlaps between biclusters: If this filter is 

chosen with parameter n%, biclusters with overlap rates 

with other biclusters above/below/equal to n% are 

dropped and the matrix is built again with the rest of 

biclusters. 

For example, when the analyst fixes the minimum number 

of overlapped biclusters to 2 and the maximum one to 5 from 

the 20 biclusters overlapped matrix, the result is a matrix with 

overlaps between 2 and 5 biclusters (see Figure 6). 

 

Figure 5. Data analysis part. (a) Two sorting criteria. (b) Different possible filters. (c) Zoom controls. 

Our approach also supports sorting and zooming. By 

default, the data is sorted based on the number of overlapped 

biclusters. The analyst can define a secondary sorting criterion 

using a clustering algorithm based on the Levenshtein distance 

[23], which represents a string metric for measuring the 

difference between two sequences. This allows the analyst to 
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explore the data from different perspectives and identify 

patterns and trends that may not be visible otherwise (see 

Figure 7). The analyst can control the zoom level of the 

biclustering results matrix using the zoom controls in the data 

analysis section of the global visualization interface. The 

analyst can zoom in, zoom out, or reset the visualization, 

which will remove all zoom and filter interactions. 

Our approach also supports sorting and zooming. By 

default, the data is sorted based on the number of overlapped 

biclusters. The analyst can define a secondary sorting criterion 

using a clustering algorithm based on the Levenshtein distance 

[23], which represents a string metric for measuring the 

difference between two sequences. This allows the analyst to 

explore the data from different perspectives and identify 

patterns and trends that may not be visible otherwise (see 

Figure 7). The analyst can control the zoom level of the 

biclustering results matrix using the zoom controls in the data 

analysis section of the global visualization interface. The 

analyst can zoom in, zoom out, or reset the visualization, 

which will remove all zoom and filter interactions. 

 

Figure 6. Result from two kinds of filters. (a) The minimum number of overlapped biclusters is fixed to 2 and the maximum is fixed to 5 (red rectangle). (b) The 

resulting matrix of overlaps. 

 

Figure 7. Matrix overlaps sorted by Levenshtein distance [23]. Three groups 

of similar rows (overlaps) can be released from visualization. Group 1 

contains rows 29 and 30, group 2 contains rows 22, 25, and 27, and group 3 

contains rows 16, 17 and 18. This means that these three groups are very 

similar on the side of overlapped biclusters. 

2.4. Detail Visualization 

In addition to the matrix of overlapped bicluster overview, 

the proposed technique allows the visualization of single 

biclusters or overlaps as a heatmap in the detail view part. We 

chose heatmap representation as it is the most intuitive and 

widely used technique to visualize this type of biological data. 

Heatmaps provide a dense and visually appealing way to 

represent the complex relationships between genes and 

samples in bicluster data. In fact, heatmap visualization is a 

must-be in any visual analytics approach to gene expression 

analysis. Analysts are used to it and it directly conveys the 

idea of microarray: color intensities on arrayed spots [24]. 

Cells of heatmaps, which depict transcription levels of genes 

under each condition, are drawn based on a blue-white-red 

color scale since the typical green-black-red scale is not 

suitable for perceiving changes in hue [7]. Also, to improve 

time performance and to save screen real estate, gene 

expression matrices are not fully displayed although we fix the 

maximum number of rows to 2000 in order to display large 

groups of genes, which can change with the selections 

performed along the analysis. The overall aspect of the data 

can be perceived by just a sample of the original matrix, and 

the real utility of a heatmap comes with the filtering and 

reordering of rows and columns based on analysis results. 

By highlighting a cell in the heatmap, analysts can view the 

corresponding transcription level, gene name, and condition 
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name. Additionally, analysts can bring a bicluster, a single 

overlap, or a set of overlaps into the focus of the heatmap 

visualization, which can help to identify patterns and 

relationships in the data. Heatmaps can be rearranged to better 

understand the context of gene profiles, and analysts can 

export the data visualized as heatmaps either as text or image 

files (see Figure 8). 

 

Figure 8. Detail visualization of bicluster17. (a) Two buttons are used to download the heatmap data as text or image files. (b) Bicluster number and its size 

(number of genes and conditions). (c) Heatmap visualization. Only genes of the bicluster are represented. Conditions of the bicluster are rearranged on the left 

and are in bold. 

3. Results from a Real Dataset 

We demonstrate the usefulness of our bicluster 

visualization method by a representative analysis of real 

dataset encoding results from yeast Saccharomyces cerevisiae 

microarray data [1]. We use this dataset because it has been 

broadly studied by biologists and images of heatmap 

clustering are available. Also, it is well cited in the literature 

and available from well-known web repositories such as 

ArrayExpress or Gene Expression Omnibus (GEO). 

The dataset contains the gene expression values of 2467 

transcripts for 79 samples that have been analyzed under Plaid 

model biclustering algorithm [25] which uses a statistical 

model to identify the distribution parameters and generate the 

data by minimizing a certain criterion iteratively to find the 

best biclusters, if they exist. It is executed under its default 

parameters, only the verbose parameter was fixed to false. Ten 

biclusters are yielded. Figure 9 shows the results as 

two-dimensional matrices. 

 

Figure 9. Plaid model result visualization for yeast Saccharomyces cerevisiae expression data. Overlaps are depicted as a two-dimensional matrix where a set of 

similar overlaps is selected. The matrix of overlaps is clustered by Levenshtein distance [23] (on the left). Genes and conditions of a set of similar selected 

overlaps are represented as a heatmap (18 genes and 9 conditions). Genes of this group are down-regulated under sporulation and diauxic shift samples, which 

are marked in bold (on the right). 
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Since the Plaid model searches for additive coherent 

evolution biclusters, we observe based on the heatmap 

visualization the existence of biclusters where their genes are 

over-expressed under considered conditions such as biclusters 

2 or 4 while there are other biclusters where their 

corresponding heatmaps show genes that are under-expressed 

with the corresponding active conditions. This observation 

reflects one of the characteristics of Plaid algorithm. 

After clustering the two-dimensional matrix of overlaps, we 

find a similar group of overlaps (see Figure 9 on the left) 

which contains genes and conditions from 8 out of the 10 

overlapped biclusters (biclusters 1 to 6, 8 and 10). These 

overlaps contain transcripts that are under-expressed 

according to sporulation and diauxic shift conditions (see 

Figure 9, right part). We mention that genes of this similar 

group with locus tags YLR441C, YML063W, and YPL081W 

are grouped together. These three genes are protein 

components of the ribosomal subunits 40S. This explains why 

they are grouped together in biclusters by Plaid model. In this 

case, they serve as validation of the method because there is 

biological evidence of the relation among genes (components 

of ribosomal subunits) but in other cases, these identifications 

could lead to new knowledge. 

4. Comparison with Other Tools 

We evaluated the performance of VisBicluster relative to 

two other state-of-the-art tools on a range of tasks, which are 

BicOverlapper [15] and Furby [16]. We chose these tools for 

four reasons: the first one is that these techniques focus on 

how to visualize overlaps between biclusters. The Second one 

is that in general, the number of tools for biclustering 

visualization is low. Third, the source codes of most of the 

tools are not available. So, running these tools as executables 

or scripts is not a straightforward task. Fourth, the chosen tools 

are the most developed ones. In fact, they implemented new 

techniques of bicluster visualization in combination with 

traditional ones like heatmaps or parallel coordinates. Thus, 

BicOverlapper uses a Venn-like representation to visualize 

biclusters. Biclusters are depicted as irregular surfaces called 

hulls, and overlaps between biclusters are shown by 

intersections of hulls. Groups of genes and conditions that are 

either on just one bicluster or on specific overlaps are 

represented by glyphs. A glyph is a pie chart divided into 

sectors, where the number of sectors represents the number of 

biclusters to which the genes and conditions belong to while 

Furby depicts biclusters and their overlaps as a node-link 

graph. Biclusters are the nodes of the graph and shared genes 

and conditions between biclusters are considered as edges or 

bands. Each bicluster node is depicted as a heatmap matrix, 

where rows represent genes and columns represent conditions 

of the corresponding bicluster. Overlaps between each pair of 

biclusters are encoded using bands that link the corresponding 

heatmaps at the position of the shared rows and columns. The 

Venn-like representation provides a more global view of the 

biclusters, while the node-link graph provides a more detailed 

view of the relationships between the biclusters 

We evaluated the clarity and simplicity of the visualization 

methods for quickly identifying target information about 

biclusters and their overlaps. In order to do that, we used a 

synthetic dataset from Padilha and Campello repository [26] 

to perform a user study with 14 participants. For the real 

dataset, we used the human lung carcinomas data [27]from the 

same repository. This dataset is validated through gene set 

enrichment and clustering accuracy [26]. 

The physical setup for the comparison process consisted of 

an Intel Core 2 Duo laptop computer at a frequency of 2 GHz 

and 3 Gigabytes of RAM. 

 

Figure 10. Bimax bicluster visualization for synthetic data with VisBicluster. 

4.1. Comparison Results from Synthetic Dataset 

We chose 14 participants for this study. Six participants (3 

male, 3 female) were Ph. D. students with intermediate 
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experience, five participants (3 male, 2 female) were computer 

science teachers at secondary level school, and three 

participants (3 male) were senior researchers and practitioners 

at a computer science faculty. The training session began with 

a lecture on the relevant functionality of each visualization 

tool and an introduction to the bicluster notion. After the 

explanation, participants were invited to work independently 

with each tool for as long as they wanted, discovering all of its 

features. During this training phase, participants could ask 

questions to the instructor. Finally, participants were given a 

quiz to assess their understanding of the operating principles 

of each visualization tool and their ability to use them to 

answer specific tasks correctly. 

We used the synthetic dataset generated by Padilha and 

Campello [26] which is composed of 500 rows and 200 

columns. The used biclustering algorithm is Bimax 

[22]because it has an easy interpretation of biclusters (highly 

up or down-regulated constant biclusters). It was executed 

with a binary threshold value equal to 0.5, so only 

transcription levels that are higher than this threshold are 

considered. The minimum size of biclusters was set to 2x2, 

finding 100 biclusters. We focus on the first 20 biclusters. 

Figure 10 shows the results for VisBicluster while Figure 11 

shows a snapshot of the overall visualization result for 

BicOverlapper and Furby. Inspired by the work of [28], we 

identified three main categories of tasks to assess, some of 

which included multiple subtasks [17]: 

1. Tasks related to biclusters like find out the total number 

of overlapped biclusters. 

2. Tasks related to overlaps between biclusters. As an 

example, find out the largest/smallest overlap. 

3. Tasks related to bicluster elements (genes and/or 

conditions) like find out the elements belong to a specific 

bicluster, that are not integrated into any overlap. 

Ten tasks were given to participants, some of which had 

subtasks. The following list describes the tasks and subtasks 

that were used in the study: 

1. Task 1: Find out the total number of overlapped 

biclusters. 

2. Task 2: Find out the total number of overlaps. 

3. Task 3: Find out the list of biclusters that have elements 

(genes and conditions) not integrated into any overlap. 

4. Task 4: Analyze overlaps: e g. find out if a certain pair 

of biclusters or if a certain group of biclusters overlap (i 

e. have non-empty intersections): 

4.1. Identify overlaps between k biclusters (In our test, we 

ask to find the number of overlaps between two biclusters). 

4.2. Identify the biclusters involved in a certain overlap (In 

our test, the choice of the overlap is up to the participant). 

4.3. Identify the biclusters not integrated into any overlap. 

5. Task 5: Analyze exclusion overlaps: e g. find out if 

bicluster A does not intersect with bicluster B (In our 

test, we ask to find out if bicluster 1 has intersections 

with bicluster 2. If yes, what are the numbers of overlaps 

between them?). 

6. Task 6: Find out the largest/smallest overlap (In our test, 

we ask to find only the largest overlap). 

7. Task 7: Find out the largest/smallest bicluster (In our 

test, we ask to find only the largest bicluster). 

8. Task 8: Analyze and compare bicluster exclusiveness: e 

g. find out if bicluster A contains more exclusive 

elements than bicluster B, or more elements shared with 

1, 2, 3 or any number of biclusters (In our test, we ask to 

find out if bicluster 1 has more exclusive elements than 

bicluster 2). 

9. Task 9: Analyze elements: 

9.1. Find elements that belong to a specific bicluster 

(Participant’s choice). 

9.2. Find elements that belong to a specific overlap 

(Participant’s choice). 

9.3. Find elements belong to a bicluster that are not 

integrated into any overlap (Participant’s choice). 

10. Task 10: Find elements based on their bicluster 

memberships: e g. elements in bicluster A and in 

bicluster B but not in C (In our test, we ask to find out 

shared elements between biclusters 1 and 2 but are not 

involved in bicluster 3). 

To avoid pre-learned behavior biases from the first tested 

tools, we randomized the test order for the three tools across 

all the 14 participants. 

The results of the pilot study are summarized in Figure 12. 

The average time to answer 8 out of 10 tasks is the lowest 

one for our tool compared to Furby and BicOverlapper. 

Furthermore, the global average time of VisBicluster is also 

the lowest one (1.8s). Our visualization technique is unique in 

its ability to clearly and concisely display overlaps between 

biclusters. By using a matrix to represent overlaps, we can sort 

them in a way that makes them easy to analyze and interpret. 

This is in contrast to other visualization techniques that use 

linkage elements to represent overlaps, which can be cluttered 

and difficult to understand. By avoiding clutter, our 

visualization makes it easy for users to answer questions about 

overlaps, such as which biclusters have the most overlap or 

which genes are involved in the most overlaps. 

However, we notice that Furby has the lowest answer time 

in tasks 1 and 7 (finding the number of biclusters and the 

largest or smallest one). This can be explained by the fact that 

Furby's node-link diagram is effective for overview tasks 

because the nodes that depict biclusters are easily perceived 

by participants. In contrast, BicOverlapper hulls are very 

overlapping and extensive, and VisBicluster visualization 

focuses on the overlaps themselves, making these two 

approaches less efficient for these tasks. Yet, Furby has the 

highest answer times for some tasks like tasks 2, 3, 10, and 

subtask 4.1 since the links between biclusters that represent 

overlaps are too dense and cluttered, it is impossible to answer 

these tasks (9 out of 14 participants cannot give answers about 

these tasks). In contrast, BicOverlapper gives, in general, 

reasonable results for most of the tasks (global average answer 

time of 5.5 s). Despite being the only approach that dissolves 

biclusters in favor of overlaps, BicOverlapper only 

underperforms Furby and VisBicluster on three tasks (1, 5, 

and 7), two of which are bicluster-centered. VisBicluster, an 

overlap-focused biclustering algorithm, keeps bicluster 
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information on a secondary level (as columns in the overlap matrix), addressing this issue. 

 

Figure 11. Bimax bicluster visualization for synthetic data with (a) BicOverlapper and (b) Furby. 

 

Figure 12. Answering times of the tools Furby, BicOverlapper, and VisBiclusters for the proposed tasks. 
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4.2. Comparison Results from Real Dataset 

In order to evaluate our visualization method biologically, 

we conducted a real case study based on data from the same 

repository used in the synthetic comparison subsection. From 

this repository [26], we chose the human lung carcinomas 

dataset [27] from a collection of 35 cancer datasets. The 

dataset contains the gene expression values of 12600 

carcinomas transcripts for 203 snap-frozen lung tumors and 

normal lung samples that have been analyzed using Bimax 

algorithm [22]. Because of the exhaustiveness of Bimax and to 

show a reasonable number of biclusters with reasonable sizes 

as a result, we fixed the binary threshold parameter to a high 

value (2000), so only transcription levels that are higher than 

this threshold are considered. The minimum size of biclusters 

was set to 2x2, finding 100 biclusters. We consider the first 20 

ones. Figure 13 shows the visualization result as a 

two-dimensional matrix based on VisBicluster while Figure 

14 shows visualization results for BicOverlapper and Furby. 

From the visualization of Figure 13, we find easily that 8 

out of the 20 biclusters with exclusive elements (genes and/or 

conditions not integrated into any overlap) since they have 

rows in the matrix of overlaps with only one filled cell while 

the remaining overlaps are between at least two biclusters. 

Based on the used color scale, bicluster 1 is the largest one (73 

genes and 2 conditions). Also, the overlaps with the high 

number of genes and conditions are overlaps 20, 38, 49, and 

overlaps from 52 to 55. Among them, we focus on overlap 55, 

which therefore can be an interesting candidate for a detailed 

inspection. By selecting rows of this big overlap and 

visualizing its corresponding genes and conditions as 

heatmaps and based on the original paper describing the 

analysis of this lung cancer data [27], we depict that these 35 

genes are activated under conditions from all the biclusters. 

The interesting knowledge that can be deduced from these 

genes is that they are activated under the two conditions of 

bicluster 1 (AD230 and AD 252) which are classified in one of 

the six defined clusters generated from the clustering of the 

adenocarcinoma human lung tumors [27] using two clustering 

algorithm; hierarchical [1] and probabilistic model-based 

clustering [29]. These two conditions are in the class of 

proliferation-related gene expression (C1). The list of defined 

clusters includes also colon metastases cluster (CM), 

neuroendocrine gene expression cluster (C2), ornithine 

decarboxylase 1 and surfactant gene expression cluster (C3), 

Type II pneumocyte gene expression cluster (C4) and normal 

lung cluster (NL). We mention that tumors in the C1 cluster 

express high levels of genes associated with cell division and 

proliferation which are also expressed under other samples 

such as squamous cell lung carcinoma (SQ) and SCLC [27]. 

In conclusion, we notice the importance of bicluster 1 

which is the largest bicluster and it is integrated into the 

largest overlap (number 55). Also, his conditions are 

interesting in human lung tumors analysis. This would suggest 

that this bicluster can demonstrate the ability of gene 

expression analysis to discriminate primary lung 

adenocarcinomas from metastases of extra-pulmonary origin 

[27]. 

Focusing on the visualization of Figure 14, we mention that 

with BicOverlapper visualization (see Figure 14a), with pie 

charts usage, inferring the most interesting overlaps is a little 

bit straightforward but deducing information about biclusters, 

either their names is not a simple task. This difficulty can be 

explained by the exhaustiveness of Bimax (high rate of 

overlaps). For Furby visualization (see Figure 14b), with the 

node-link diagram representation, biclusters are easily 

perceived but it’s not the same case with overlaps since bands 

coding them become quickly too cluttered with either a 

medium rate of overlapping. 

 

Figure 13. Bimax bicluster visualization for the human lung carcinomas 

dataset with VisBicluster. Overlap 55 is the most important one based on the 

defined color scale. 
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Figure 14. Bimax bicluster visualization for the human lung carcinomas dataset with (a) BicOverlapper and (b) Furby. 

5. VisBicluster and the Visualization 

Principles 

VisBicluster is designed following the rules of information 

visualization (InfoVis), especially the Gestalt laws and 

Mackinlay visual variables for overlaps perception [30, 31] 

and also, the visualization mantra for the visualization process 

[32, 33]. Our technique is based essentially on similarity and 

connectedness principles as well as position and color 

saturation variables. Table 1 resumes the main principles 

observed in VisBicluster. 

Table 1. VisBicluster visualization objectives and InfoVis principles. 

Objective Visbicluster Principle 

Represent biclusters Text, color Similarity, position, color saturation 

Represent overlaps Cells, color Similarity, position, color saturation, shape 

Represent elements Text Area, containment 

Distinguish biclusters and elements Text Area, containment 

Dissolve ambiguities Hovering, color Shape, color hue 

Overall display Matrix, overview Overview first 

Reduce cluttering and navigation Interaction Focus+context 

Analyze and filter data Filtering options Analyze further 

Textual information Text Details on demand 
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6. Data Communication and Retrieval 

Following the multiple-linked views philosophy [33], the 

visualization techniques implemented by VisBicluster are 

interconnected so the interaction with one of them affects the 

rest. A communication layer translates the items selected on a 

visualization technique to the related items on other 

visualizations (see Figure 15). Despite their nature, all the data 

sources share two entities, genes, and conditions that are used 

to perform the translations. For example, the selection of a cell 

in the two-dimensional matrix of overlaps leads to the 

selection of its genes and conditions as a heatmap or to the 

biclusters it belongs to. 

 

Figure 15. Layer and data schema of VisBicluster. 

Another interesting aspect to discuss is how data of 

different natures are retrieved by VisBicluster. The 

straightforward method to obtain data is to let the user provide 

them. In fact, it is important to give the user control about the 

nature of data especially in the case of expression data and 

also in the case of analyzed data. Therefore, users must 

manually load any expression matrix they want to analyze. 

The format is kept simple so the user’s data can be easily 

translated from other formats. We allow the load of bicluster 

results from sources generated with biclust R package [34]. 

7. Conclusion 

Biclustering is a powerful unsupervised learning technique 

that can be used to identify patterns in gene expression data. 

However, the interpretation of biclustering results can be 

challenging, especially when there are a large number of 

overlapping biclusters. To address this challenge, we have 

developed VisBicluster, an interactive visualization tool that 

allows analysts to explore and analyze biclustering results. 

VisBicluster represents biclusters and their corresponding 

overlaps as a two-dimensional matrix, which provides an 

overview of the overall relationships between all biclusters. 

VisBicluster comes with an easy-to-use web interface that 

allows analysts to investigate individual biclusters in detail 

[17]. 

The developed visualization technique allows visualizing 

interesting number of biclusters together within a single 

representation, which fulfills the main characteristics of 

biclustering (i e., bi-dimensionality and overlapping). The 

visualization prioritizes overlaps that are displayed in a sorted 

way (as a matrix) instead of as linkage elements subsidiary to 

main visual elements (biclusters). 
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